
Mobile App Development
Guidebook

Install NodeJS, Ionic, Visual Studio Code

Install Node.js – Mac OS
1. Go to https://nodejs.org/en/ and download the LTS version - 8.11.4 LTS.

Be sure to install the version labeled LTS. Other
versions have not yet been tested with npm.

Install Node.js – Mac OS
2. After download completed, open the installer and run the install.

Students only

CLI for Mac
1. Search and open Terminal from your Mac.

Students only

CLI for Windows
1. Search Windows PowerShell from your Windows.
2. Right click on Windows PowerShell, then go to More>Run as Administration.

3. A PowerShell window will appear.

Students only

Test your installation
To verify that you installed Node.js correctly on your computer, run the following command:
1. Open a Terminal window for Mac or Windows PowerShell for Windows.
2. Type and press Enter.
3. You should get an output similar to this:
4. Type and press Enter.
5. You should get an output similar to this, which stated your Node.js version:

npm -v

v8.11.4

node -v

5.6.0

You can run in the terminal to clear all command history.clear

Students only

Install Ionic Cordova
To install Ionic Cordova, run the following command:
1. Open a Terminal window and type:
For Mac,
For Windows,
2. You may be asked to type in your admin password.
* The installation will take a few minutes.

sudo npm install -g cordova ionic

npm install -g cordova ionic

Students only

Testing Ionic Cordova installation
1. To test Ionic version, type and press Enter.ionic -v

Students only

Testing Ionic Cordova installation
2. To test Cordova version, type and press Enter.cordova -v

Students only

Install Visual Studio Code
1. Go to https://code.visualstudio.com/download
2. Download the Visual Studio Code version for Windows or Mac.

Students only

Create Ionic App

Create Ionic App
First you need to create a folder on your desktop.
1. Type and press Enter.
2. Now you will see your desktop directory.

cd ~/Desktop

1
2

Students only

Create Ionic App
3. Type and press Enter.ionic start

4. Type your project name and press Enter.

3

4

Students only

Create Ionic App
5. Choose the Starter template as blank and press Enter. Use the up and down arrow key on

your keyboard to select the option.

5

Students only

Create Ionic App
6. Then type y for yes on the question as shown below, and press Enter.

6

Students only

Create Ionic App
7. Wait until it's done. Then type n for the questions as the picture below, and press Enter.

7

Students only

Create Ionic App
8. Wait for it to finish and you will be able to see the result as the picture below.

8

Students only

Create Ionic App
9. Look at your desktop, you will see the folder that you have just created.

Students only

Preview your app
1. Please make sure you are still in your desktop directory.

1

Students only

Preview your app
2. Change your directory to your project folder. Type cd ~/Desktop/[your project name] or

cd ./[your project name]. For example, cd ./mudotmy.

2

Students only

Preview your app
3. Type to preview your app and press enter.ionic serve -l

Command ‘-l’ is
alphabet ‘l’, not number ‘1’

Students only

Preview your app
4. Wait for it to finish, type Y for yes to install Ionic/lab.

Students only

Preview your app
4. Wait for a moment, then you will see your app appear on your browser.

DO NOT close the running
terminal

Students only

Preview your app
3. Click on Platform on the top right and check any Platform that you want to preview.

Students only

Folder Structure
You need to understand the folder structure when you want to develop your app.
Open the app folder that you have just created:

config.xml
Contain app name and version.
resources
Contain app icon
src
Contain app contents/menu/pages

Students only

Folder Structure
You need to understand the folder structure when you want to develop your app.
Open the app folder that you have just created:

node_modules
Dependency.
www
Final compile HTML, CSS & Javascript.

Note: These two folders can be removed if you want to
move the app folder to other location. You need to install
it back when you want to publish your app.
To install it back:
1. Open the Terminal window.
2. Type or n and press Enter.npm install npm i

Students only

Edit content/UI elements

Visual Studio Code
1. Open the Visual Studio Code.

Students only

Install Plugin
1. Go to View>Extension or click on the Extension icon on the left side menu.

Students only

Install Plugin
2. Search and install the following plugins.

Check the plugin name and publisher name before download.

Students only

Install Plugin
3. The plugin has been successfully installed.

Students only

Open App folder in Visual Studio Code
1. Go to File > Open.

Students only

Open App folder in Visual Studio Code
2. Locate your app folder and click Open.

DO NOT double click to open the folder, locate the folder and click open.

Students only

Open App folder in Visual Studio Code
3. The app folder menu will appear at the left side of Visual Studio Code.

Students only

Add new page to mobile app
First, you should remove the default home page and create a new home page.
1. Locate your app folder and go to src>pages.
2. Delete the home folder.

Students only

Add new page to mobile app
3. The page will be removed in Visual Studio Code.

Students only

Add new page to mobile app
4. Go to your terminal window.
5. Use Ctrl+C to quit the running process.
6. Type or shortcut command
7. Press Enter.

ionic generate page home ionic g page home

Every time you want to run command
on terminal, you need to quit the ionic
serve process by pressing Ctrl+C. After

finish, run it back with
ionic serve -l

Students only

Add new page to mobile app
8. You can create more pages by running this command.

9. The new pages will be added to the app folder in your computer and Visual Studio Code.

You can use the up and down arrow
key on your keyboard to search

command history.

Students only

Add new page to mobile app
8. After completed, type and press Enter.ionic serve -l

9. A new page of your app will appear on your browser.

Students only

Edit/Add content to Page
To edit the title of the page:
1. On Visual Studio Code, go to src/pages/home/home.html

Every time you want to run command
on terminal, you need to quit the ionic
serve process by pressing Ctrl+C. After

finish, run it back with
ionic serve -l

Students only

Edit/Add content to Page
2. Try to edit the title for your mobile app.

Edit title here

3. Save the file by using Ctrl+S or go to file>save.

Students only

Edit/Add content to Page
4. Go back to the app on your browser. You can see the title is changed.

Students only

Generate content from HTML editor
1. Go to https://htmleditor.io/

You can edit your content here The content will be generated
to HTML codeStudents only

Generate content from HTML editor
To add an image:
1. Click on the image icon to insert/edit image.

2. Insert the image URL and click OK. You can edit your image description and dimensions
from here.

Students only

Generate content from HTML editor
3. The image will be added to the editor and HTML code will be generated.

4. Select the image and make it align to center.

Students only

Generate content from HTML editor
To add text:
1. Insert text into the HTML editor.
2. Select the text and go to Format>Heading, then select the desired heading style from the

drop-down menu that appears.

Students only

Generate content from HTML editor
To align to center:
1. Select the content that you want to adjust alignment.
2. Click Align center.

Students only

Generate content from HTML editor
To align to center:
3. The content will be align to center.

Students only

Import content from HTML editor to Visual Studio Code

1. On the HTML editor, you can see that the content you have just created has been
generated to HTML code.

2. Select and copy all the generated HTML code.Students only

Import content from HTML editor to Visual Studio Code
3. On the Visual Studio Code, go to the page that you want to edit, and paste the HTML

code after

4. Save the file and you will see the visual preview on your Ionic app preview page.

<ion-content padding>

<ion-content padding>
<p><img style="display: block; margin-left: auto; margin-right: auto;"
src="https://mu.my/wp-content/uploads/logo.png" alt="" width="202"
height="58" /></p>
<h5 style="text-align: center;">Available Training Courses</h5>
</ion-content>

Students only

Add content from Ionic Components
• Ionic apps are made of high-level building blocks called

components.
• Components allow you to quickly construct an interface

for your app.
• Ionic comes with a number of components, including

modals, popups, and cards.
• Check out the examples below to see what each

component looks like and to learn how to use each one.
Students only

Ionic Components - Button

• Buttons are an essential way to interact with and navigate
through an app, and should clearly communicate what
action will occur after the user taps them.
• Buttons can consist of text and/or an icon, and can be

enhanced with a wide variety of attributes.

Students only

Ionic Components - Button
1. On your Ionic app preview page, click Components on the left side menu.

Students only

Ionic Components - Button
2. You will be landing on this page.

Students only

Ionic Components - Button
3. Choose Buttons from the left side menu under Components.

Students only

Ionic Components - Button
4. Scroll down the page to choose desired button style. A preview of the button style will

appear in the mock up phone on the left. In this example, we choose Block Buttons.

Students only

Ionic Components - Button
5. Copy the HTML code of Block Button and paste it on Visual Studio Code, then save the

file.

6. This is how the button looks like on your app preview page.

Students only

Ionic Components - Button
5. You can edit the text for the button.

Result:

<button ion-button block>Course 1</button>

Students only

Ionic Components - Grid
• You need to create grid for your app interface.
• Without creating grid, the contents that you created will

not be responsive.

Students only

Ionic Components - Grid
1. On the Ionic Components page, choose Grid from the left side menu under Components.

Students only

Ionic Components - Grid
3. Copy the code and paste it on Visual Studio Code.

Students only

Ionic Components - Grid
The following image explains how the grid system works:

Edit content here1st row

2nd row

Grid started Point

Grid closed Point

Edit content here

Students only

Ionic Components - Grid
Example:

b

a

<ion-row>
<ion-col col-12><button ion-button
block>Course 1</button></ion-col>
</ion-row>

a

b

c

<ion-row>
<ion-col col-6><button ion-button
block>Course 2</button></ion-col>
<ion-col col-6><button ion-button
block>Course 3</button></ion-col>
</ion-row>

Students only

Ionic Components - Grid
Example:

a

<ion-row>
<ion-col col-4><button ion-button
block>Course 4</button></ion-col>
<ion-col col-4><button ion-button
block>Course 5</button></ion-col>
<ion-col col-4><button ion-button
block>Course 6</button></ion-col>
</ion-row>

c

b

c

Students only

Ionic Components - Card

• For mobile experiences, Cards make it easy to display the
same information visually across many different screen
sizes.
• They allow for more control, are flexible, and can even be

animated.
• Cards are usually placed on top of one another, but they

can also be used like a "page" and swiped between, left
and right. Students only

Ionic Components - Card
1. On the Ionic Components page, choose Card from the left side menu under

Components.

Students only

Ionic Components - Card
2. Scroll down the page to choose desired card style. A preview of the card style will appear

in the mock up phone on the left. In this example, we choose Images in Cards.

Students only

Ionic Components - Card
3. Copy the code and paste it on Visual Studio Code.

Students only

Ionic Components - Card
4. Edit the content.

<ion-card>
<img src="https://mu.my/wp-
content/uploads/Banner_Promo_MApps_EN_small.png
"/>
<ion-card-content>
<ion-card-title>
Mobile App Development Training
</ion-card-title>
<p>
Create Hybrid Apps with simple interface using
FREE Software by Cordova and export it to iOS,
Android or Windows Store.
</p>
</ion-card-content>
</ion-card>
</ion-content>

a

b

c

a

b

c

Edit the image URL.

Edit the title.

Edit the card description.

Students only

Ionic Components - Card
Result:

Students only

Theming

Text Alignment

Attribute Style Rule Description

text-left text-align: left The inline contents are aligned to the left edge of the line box.

text-right text-align: right The inline contents are aligned to the right edge of the line box.

text-start text-align: start The same as text-left if direction is left-to-right and text-right if
direction is right-to-left.

text-end text-align: end The same as text-right if direction is left-to-right and text-left if
direction is right-to-left.

text-center text-align: center The inline contents are centered within the line box.

• Ionic provides a set of utility attributes that can be used on any element in order to modify
the text alignment.

Students only

Text Alignment

Attribute Style Rule Description

text-justify text-align: justify The inline contents are justified. Text should be spaced to line
up its left and right edges to the left and right edges of the line
box, except for the last line.

text-wrap white-space: normal Sequences of whitespace are collapsed. Newline characters in
the source are handled as other whitespace. Breaks lines as
necessary to fill line boxes.

text-nowrap white-space: nowrap Collapses whitespace as for normal, but suppresses line breaks
(text wrapping) within text.

• Ionic provides a set of utility attributes that can be used on any element in order to modify
the text alignment.

Students only

How to use Text Alignment
For example, you want to align the header title to center:

Students only

How to use Text Alignment
1. Go to your src/theme/variables.scss file in Visual Studio code, locate the title that you

want to modify.
2. Add as a property.

<ion-header>

<ion-navbar>
<ion-title text-center>MU DOT MY PLT</ion-title>
</ion-navbar>

</ion-header>

3. Save the file.

text-center

Students only

How to use Text Alignment
4. Now the title has been aligned to center.

Students only

Theming your Ionic App
• Theme support is baked right into Ionic apps. By default, Ionic have 5 Named Color

Variables.
• Named colors makes it easy to reuse colors on various components.
• It's highly recommended to change the default colors to match your app's branding. Ionic

uses a Sass map of colors so you can add, rename and remove colors as needed.

• The fastest way to change the theme of your Ionic app is to set a new value for primary,
since Ionic uses the primary color by default to style most components. Colors can be
removed from the map if they aren’t being used, but primary should not be removed.

Students only

How to use color into components
• Ionic makes the $colors keys available as a property to many components.
• For example, you want to change the background color of the page title.

Students only

How to use color into components
1. On Visual Studio Code, go to your src/pages/home/home.html file.

Students only

How to use color into components
2. Add as a property, then save the file.

<ion-header>

<ion-navbar color="primary">
<ion-title text-center>MU DOT MY PLT</ion-title>
</ion-navbar>

</ion-header>

3. Now the color of title background has been changed to primary color.

color="primary"

Students only

How to change color theme
Changing the theme is as easy as updating the $colors map in your
src/theme/variables.scss file:
1. On Visual Studio Code, go to your src/theme/variables.scss file.

2. Locate $colors map Students only

How to change color theme
3. Hover the mouse over the color code that you want to change, a color palettes will

appear.

Students only

How to change color theme
4. Select the desired color from the color palettes, you can also change the color code in

order to change the color.

Students only

How to change color theme
5. Save the file, now the color of title background has been changed to the color that you

have changed just now.

The color will also apply on other components as Ionic uses
the primary color by default to style most components. So the
fastest way to change the theme of your Ionic app is to set a

new value for primary. Students only

Add custom color
1. To use custom color keys, just add them to the $colors map:

Students only

Add custom color
1. To use custom color keys, just add them to the $colors map. For example, we added

mulight as the new custom color.

Students only

Add custom color
3. Now the color of button has been changed to mulight color.

Students only

Add custom color
2. Add as the property of all buttons.

<ion-row>
<ion-col col-12><button ion-button block color="mulight">Course 1</button></ion-col>
</ion-row>
<ion-row>
<ion-col col-6><button ion-button block color="mulight">Course 2</button></ion-col>
<ion-col col-6><button ion-button block color="mulight">Course 3</button></ion-col>
</ion-row>
<ion-row>
<ion-col col-4><button ion-button block color="mulight">Course 4</button></ion-col>
<ion-col col-4><button ion-button block color="mulight">Course 5</button></ion-col>
<ion-col col-4><button ion-button block color="mulight">Course 6</button></ion-col>
</ion-row>
</ion-grid>

color="mulight"

Students only

Ionic Page

IonicPage

• Unlike traditional web apps, URLs don't dictate navigation
in Ionic apps.
• Instead, URLs help us link to specific pieces of content as a

breadcrumb.
• The current URL gets updated as we navigate, but we use

the NavController push and pop, or NavPush and NavPop
to move around. This makes it much easier to handle
complicated nested navigation.Students only

How to link to other pages
For example, you want to link the button to your contact page:

Students only

How to link to other pages
1. On Visual Studio Code, go to your src/pages/home/home.ts file.

2. Locate the following text from the home.ts file

export class HomePage {

Students only

How to link to other pages
3. Add under

export class HomePage {
contactPage = "ContactPage";

export class HomePage {
contactPage = "ContactPage";

The name that you
uses to navigated

4. Save the file. This will automatically create a link to the ContactPage component using
the same name as the class, name: ’contactPage'. The page can now be navigated to
by using this name.

Component Name

contactPage = "ContactPage"; export class HomePage {

Students only

How to link to other pages
5. On Visual Studio Code, go to your src/pages/home/home.html file.

6. Locate the button that you want to link to Contact page.

<button ion-button block color="mulight">Ask for quotation</button>

Students only

How to link to other pages
7. Add as the property of the button.

8. Save the file. Now the button has been linked to Contact Page.

<button ion-button block color="mulight” [navPush]="contactPage">Ask for
quotation</button>

[navPush]="contactPage"

Students only

Publishing Your App (Android)

Publishing Your App

• Now that we have a working app, we are ready to push it
live to the world!
• So first, we need to generate a release build of our app,

targeted at each platform we wish to deploy on.

Students only

Publishing app to Google Play Store
Now that we have our release APK ready for the Google Play Store, we can create a Play
Store listing and upload our APK.
1. Go to https://play.google.com/apps/publish/
2. Login with your Gmail account that you want to use for publishing App on Play Store.

Students only

Publishing app to Google Play Store
3. Scroll down the page. After reading the Google play store developer distribution

agreement agree to their terms by clicking on check box.
4. Click CONTINUE TO PAYMENT.

Students only

Publishing app to Google Play Store
5. Now you will need to pay one time ‘Developer Registration Fee’ of $25 to Google. Please

fill your credit card details to make the payment.

Students only

Publishing app to Google Play Store
6. Complete your account details for Google developer account. For example see the

below image:

Students only

Publishing app to Google Play Store
7. Now click on Create Application.

Students only

Publishing app to Google Play Store
8. Enter the name of your App.

Students only

Publishing app to Google Play Store
9. Now fill store listing details of your App which include Title, Short description, and Full

description.

Students only

Publishing app to Google Play Store
10.After this you need to put some App screenshots here. The minimum required are 2

screenshots and maximum limit is 8.

Students only

Publishing app to Google Play Store
11.After screenshot now you need to put a high Resolution icon or logo with a size of 512 *

512 pixel. This will be displayed on Play Store.
After that another mandatory thing is you need to put a feature graphic of 1024 * 500
pixel dimension. See below image for more detail.

Students only

Publishing app to Google Play Store
12.Now scroll down and fill other details which include application type, category, website,

email and phone no.
After this check privacy policy because now we are not submitting and then click on save
draft. If your App require user permission then it is mandatory to put privacy url.
Click on Save Draft to save your work so far.

Students only

Publishing app to Google Play Store
13.After saving data on draft now go to app release and click on manage production.

14.Now you will see create release now click on it.

15.After click on create release you will see browse files click on it and upload your signed
APK. Students only

Publishing app to Google Play Store
16.Once the upload is successful then scroll down and click on review to check.

17.Now go to Content Rating and click on continue.

Students only

Publishing app to Google Play Store
18.Fill details which include email address and select your categories.

Students only

Publishing app to Google Play Store
19.Now select Violence, Sexuality, Language, Controlled Substance and Miscellaneous

based on your App. First click on save questionnaire for save and then click on calculate
rating.

Students only

Publishing app to Google Play Store
20.Now click on apply rating.

Students only

Publishing app to Google Play Store
21.Click on pricing and distribution and select free/paid based on how you want user to

access your App.

Students only

Publishing app to Google Play Store
22.Now scroll down and see mandatory things with * you need to select After this click on

save draft .

23.Now Click on ready on publish along with save draft and click on Manage release.

24.Click on Manage Production.

Students only

Publishing app to Google Play Store
25.After Manage production click on edit release.

26.Now click on review.

Students only

Publishing app to Google Play Store
27.After review click on Start Rollout to production. Now you need to confirm. After confirm

you will need to wait for one or six hour for approval.

Students only

Publishing Your App (iOS)

iOS Publishing
• First, you need to enroll in Apple Developer Program

https://developer.apple.com/programs/.

Students only

Connecting Xcode with your developer account
Ø After you receive your developer status, open Xcode on your Mac and go to Preferences -

> Accounts and add your account to Xcode by clicking the + button on the lower left
hand side, and follow the instructions:

Students only

Signing
1. Now that you linked Xcode with your developer account, go to Preferences -> Accounts,

select your Apple Id on the left hand side and then click the View Details button shown on
the previous image. You should see the popup similar to the one on the image below:

2. Click the Create button next to the iOS Distribution option.Students only

Setting up the app identifier
1. Next, through the Apple Developer Member Center we’ll set up the app ID identifier

details. Identifiers are used to allow an app to have access to certain app services like for
example Apple Pay. You can login to Apple Developer Member Center with your Apple
ID and password.

2. Once you’re logged in you should choose Certificates, Identifiers, and Profiles option as
shown on the image below:

Students only

Setting up the app identifier
3. On the next screen, shown on the image below, select the Identifiers option under the iOS

Apps.

Students only

Setting up the app identifier
4. On the next screen, shown on the image below, select the plus (+) button in order to add

a new iOS App ID.

Students only

Setting up the app identifier
5. On the next screen, shown partialy on the image below, you’ll have to set the name of

your app, and use the Explicit App ID option and set the Bundle ID to the value of the id in
your Cordova config.xml tag.

Students only

Setting up the app identifier
6. Additionally, you’ll have to choose any of the services that need to be enabled. For

example, if you use Apple Pay or Wallet in your app, you need to choose those option.

• You can learn more about registering app identifiers from the official documentation.
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionG
uide/MaintainingProfiles/MaintainingProfiles.html

Students only

Creating the app listing
1. Apple uses iTunes Connect to manage app submissions. After you login, you should see a

screen similar to the one on the image below:

Students only

Creating the app listing
2. Here you have to select the My Apps button, and on the next screen select the + button,

just below the iTunes Conenct My Apps header, as shown on the image below:

Students only

Creating the app listing
3. This will show three options in a dropdown, and you should select the New App. After this

the popup appears, as shown on the image below, where you have to choose the name
of the application, platform, primary language, bundle ID and SKU.

Students only

Creating the app listing
4. Once you’re done, click on the Create button and you’ll be presented with the following

screen where you’ll have to set some basic options like Privacy Policy URL, category and
sub category.

Students only

Creating the app listing
5. Now, before we fill out everything in the listing, we’ll build our app and get it uploaded

with Xcode. Then you’ll come back to finish the listing.

• You can learn more about managing your app in iTunes Connect from the official
documentation.

https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionG
uide/UsingiTunesConnect/UsingiTunesConnect.html

Students only

Opening the project in Xcode
1. Now, open the platforms/ios/SuperSimpleCalculator.xcodeproj file in Xcode (of course

you would change SuperSimpleCalculator with your own name).

Students only

Opening the project in Xcode
2. Once the Xcode opens up the project, you should see the details about your app in the

general view, as shown on the image below:

3. You should just check that the bundle identifier is set up correctly, so that it’s the same as
the value you specified earlier in the app ID. Also, make sure that the version and build
numbers are correct. Team option should be set to your Apple developer account. Under
the deployment target you can choose which devices your application will support.

Students only

Creating an archive of the application
1. In Xcode, select Product -> Scheme -> Edit Scheme to open the scheme editor. Next,

select the Archive from the list on the left hand side. Make sure that the Build
configuration is set to Release as shown on the image below:

Students only

Creating an archive of the application
2. To create an archive choose a Generic iOS Device, or your device if it’s connected to

your Mac (you can’t create an archive if simulator is selected), from the Scheme toolbar
menu in the project editor, as shown on the image below:

Students only

Creating an archive of the application
3. Next, select Product -> Archive, and the Archive organizer appears and displays the new

archive.

Students only

Creating an archive of the application
4. At this point you can click the Upload to App Store... button, and if everything goes fine

you’ll have an uploaded app, and the only thing that’s left to do is to complete the iTunes
Connect listing and submit it for review!

5. If you get an email from iTunes Connect shortly after you uploaded the archive.

Students only

Finishing the app list process
1. Now you should head back to the iTunes Connect portal

https://itunesconnect.apple.com/ and login. Next, click on the Pricing and Availability on
the left hand side under APP STORE INFORMATION.

Students only

Finishing the app list process
2. Next, click on the 1.0 Prepare for Submission button on the left hand side, as shown on the

image below. When we uploaded our archive, iTunes Connect automatically determined
which device sizes are supported. As you can also see on the image below, you’ll need to
upload at least one screenshot image for each of the various app sizes that were
detected by iTunes Connect.

Students only

Finishing the app list process
3. Next you’ll have to insert Description, Keywords, Support URL and Marketing URL

(optionally), as shown on the image below:

Students only

Finishing the app list process
4. In the Build section you have to click on the + button and select the build that was

uploaded through Xcode in the previous steps, as shown on the image below:

Students only

Finishing the app list process
5. Next you’ll have to upload the icon, edit the rating, and set some additional info like

copyright and your information.
• Note that the size of the icon that you’ll have to upload here will have to be 1024 by 1024

pixels. Thankfully, you can use the splash.png from the second tutorial.
• If you’re the sole developer then the data in the App Review Information should be your

own. Finally, as the last option, you can leave the default checked option that once your
app is approved that it is automatically released to the App Store.

Students only

Finishing the app list process
6. Now that we’re finished with adding all of the details to the app listing, we can

press Save and then Submit for Review. Finally, you’ll be presented with the last form that
you’ll have to fill out:

Students only

Finishing the app list process
7. After you submit your app for review you’ll see the status of it in the My Apps as Waiting for

review, as shown on the image below. Also, shortly after you submit your app for review
you’ll get a confirmation email from iTunes Connect that your app is in review.

• Apple prides itself with a manual review process, which basically means it can take several
days for your app to be reviewed. You’ll be notified of any issues or updates to your app
status.

Students only

Ionic 3 authentication API

File Upload - Interface Setup
1. Go to src/pages/upload/upload.html
2. Add action button to execute the upload action.
<button ion-button block round color="secondary" (click)="getImage()"> <ion-icon name="cloud-
upload"></ion-icon> Upload File </button>

3. Create a file preview, so for image file need to create a image preview field. So that
image will be displayed in base64 format, as well as file detail.

<ion-card>
<ion-card-header>
File Details
</ion-card-header>
<ion-card-content>

Filename : <p>{{imageFileName}}</p>
File Size : <p>{{size}}</p>
</ion-card-content>
</ion-card>

Students only

File Upload - Interface Setup
4. Generate a list to re-populate the uploaded file from the server.
<ion-card>
<ion-card-header>
File List
</ion-card-header>
<ion-card-content>
<ion-list >
<ion-item *ngFor="let item of items">
{{item}}
</ion-item>
</ion-list>
</ion-card-content>
</ion-card>

Students only

File Upload - Process File setup
Install Components
Note: Please install this this component if not installed yet in your ionic project.

On your Terminal windows, run the following commands for adding and saving the plugin
camera, file, file-transfer:
• For file transfer :

• For file :

• For camera :

npm install --save @ionic-native/file-transfer

npm install --save @ionic-native/file

npm install --save @ionic-native/camera

Students only

File Upload - Process File setup
Process File setup:
1. Go to src/pages/upload/upload.ts
2. Import camera, file library for image upload processing.

import { FileTransfer, FileUploadOptions, FileTransferObject } from '@ionic-native/file-
transfer';
import { Camera, CameraOptions } from '@ionic-native/camera';
import { File } from '@ionic-native/file';

Students only

File Upload - Process File setup
3. Declare the variables:
imageURI for image URL in string type
imageFileName for file name in string type
base64image:any for store base64 file format in string type
items for list view in array format

imageURI='None';
imageFileName='None';
base64image:any;
size = 0;
items = [];

Students only

File Upload - Process File setup
4. Add this component to

private transfer: FileTransfer,
private file: File,
private camera: Camera,
public loadingCtrl: LoadingController,
public toastCtrl: ToastController,
public API: ApiProvider

constructor(

Students only

File Upload - Process File setup
5. Add this function, this function mainly to retrieve the file from file server and display in ionic

list view.
getfilelist(){
this.API.fileList('').then((result) => {
console.log(result);
this.items = [];
if(result['code'] == 1){
result['message'].forEach(element => {
this.items.push(element.name);
this.imageFileName = element.name;
this.imageURI = element.file_blob;
this.size = element.size;
this.base64image = element.file_blob;
});
}
else if(result['code'] == 2){
this.items.push(result['message']);
this.presentToast(result['message']);
}

else{
this.items.push(result['message']);
this.presentToast(result['message']);
}
}).catch(function(reject) {
console.log('reject');
this.presentToast(reject['message']);
});
}

Students only

File Upload - Process File setup
6. Add this function to getImage from file uploaded and convert it to base64 format.

getImage() {
let opcoes = {
maximumImagesCount: 1,
sourceType: 1,
encodingType: this.camera.EncodingType.JPEG,
destinationType: 0, // USE THIS TO RETURN BASE64 STRING
correctOrientation: true
};
this.camera.getPicture(opcoes).then(res => {
this.base64image = 'data:image/jpeg;base64,' + res;
this.size = this.base64image.length;
this.upload()
}, err => {
console.log(err);
});
}

Students only

File Upload - Process File setup
7. Add this function to upload file into the server.

upload(){
this.API.upload(this.base64image,this.size).then((result) => {
console.log(result);
this.presentToast(result['message']);
this.getfilelist();
}).catch(function(reject) {
console.log('reject');
console.log(reject);
});
}

Students only

File Upload - Process File setup
8. Add this to make toaster kind popup. This function will be use to notify user.

presentToast($value) {
let toast = this.toastCtrl.create({
message: $value,
duration: 3000,
position: 'bottom'
});
toast.present();
}

Students only

File Upload - Process File setup
9. Add in

ionViewDidLoad() {
console.log('ionViewDidLoad UploadPage');
this.getfilelist();
}

this.getfilelist(); ionViewDidLoad() {

Students only

File Upload - Provider File Setup
1. Go to src/providers/api/api.ts
2. Setup this 2 variable inside
credential for basic authentication that test must fit the credential on server side for basic
authentication

url_api is the url of the running api. Must setup api first to make it running properly.

credential = btoa('test' + ":" + 'test');;
url_api = "http://192.168.0.144/server/api.php";

export class ApiProvider {

Students only

File Upload - Provider File Setup
3. Add this function inside to retrieve the files uploaded

information from the server and show it in list on the page.
//filelist

fileList(value){
return new Promise((resolve, reject) =>{
var configUrl = this.url_api;
let headers= new HttpHeaders({
'Content-Type' : 'application/json',
'Authorization': "Basic " + this.credential

});
let data = {
submit : 'search',
table_name : 'file',
name : ''

};
this.http
.post(configUrl,JSON.stringify(data),{headers:headers})
.subscribe((res:any) => {
resolve(res);

}, (err) =>{
reject(err);

});
});

}

export class ApiProvider {

Students only

File Upload - Provider File Setup
4. Add upload function, to upload file to the server.
//upload
upload(file,size){
let timestamp = new Date();
return new Promise((resolve, reject) =>{
var configUrl = this.url_api;
let headers= new HttpHeaders({
'Content-Type' : 'application/json',
'Authorization': "Basic " + this.credential

});
let data = {
submit : 'upload',
table_name : 'file',
name : timestamp.getTime() + '_picture.jpg',
size : size,
type : 'image/jpeg',
file_blob: file,
timestamp: timestamp.getTime()

};

this.http
.post(configUrl,JSON.stringify(data),{headers:headers})
.subscribe((res:any) => {
resolve(res);

}, (err) =>{
reject(err);

});
});

}

Students only

File Upload – App Preview

Students only

Register form - Interface setup
1. Go to src/pages/signup.html
2. Add ionic item as below to generate the form of registration form.

<ion-item>
<ion-label >Username</ion-label>
<ion-input [(ngModel)]='username' type="text" ></ion-input>
</ion-item>
<ion-item>
<ion-label >Email</ion-label>
<ion-input [(ngModel)]='email' type="text" ></ion-input>
</ion-item>
<ion-item>
<ion-label >Password</ion-label>
<ion-input [(ngModel)]='password' type="text" ></ion-input>

</ion-item>
<button ion-button (click)="signup()">Register</button>

Students only

Register form - Page function setup
1. Go to src/pages/signup.ts
2. Declare the required variable for registration inside :
• Username, password and email for storing the username variable when input receive
username: any;
password: any;
email: any;

export class SignupPage {

3. Add insidepublic API:RestApiProvider

constructor(public navCtrl: NavController, public navParams: NavParams, public
API:RestApiProvider)

4. Import the provider file at the top:
import { RestApiProvider } from '../../providers/rest-api/rest-api';

constructor(

Students only

Register form - Page function setup
5. Inside add this signup function, this mainly will send all the

value to the provider and send it to the server via http request
export class SignupPage {

signup(){
console.log('signup');
this.API.signup(this.email,this.password,this.username).then((result) => {
console.log('result');
var output = JSON.stringify(result);
alert(output);
}).catch(function(reject) {
console.log('reject');
var output = JSON.stringify(reject);
alert(output);
});
} Students only

Register form - Page function setup
6. Add this to make toaster popup to work.
presentToast($value) {
let toast = this.toastCtrl.create({
message: $value,
duration: 3000,
position: 'bottom'
});
toast.present();
}

Students only

Register form - Provider setup
1. Go to src/providers/rest-api/rest-api.ts
2. Declare this variable inside . This variable is basically

credential for basic authentication process and url of the api.
export class RestApiProvider {

Api have to be setup properly before this function can work.

credential = btoa('test' + ":" + 'test');;
url_api = "http://192.168.0.144/api/tests/json.php";

Students only

Register form - Provider setup
3. This is mainly function for signup process. This will process all the parameter send from the

page and send it to server.
//signup

signup(email,password,username){
console.log(email,password,username);
return new Promise((resolve, reject) =>{
var configUrl = this.url_api;
let headers= new HttpHeaders({
'Content-Type' : 'application/json',
'Authorization': "Basic " + this.credential

});
let data = {
request_param : 'register',
email: email,
password: password,
username: username,

};
this.http
.post(configUrl,JSON.stringify(data),{headers:headers})
.subscribe((res:any) =>{
resolve(res);

}, (err) =>{
reject(err);

});
});

}

Students only

Register form – App Preview

Students only

Search Page – Interface setup
1. Go to src/pages/search/search.html
2. Inside insert input text box and button to search

<ion-item>
<ion-label ></ion-label>
<ion-input type="text" [(ngModel)]="search_box" placeholder="Please search IC number
here"></ion-input>
</ion-item>
<button ion-button block (click)="search()" >Search</button>

<ion-content padding>

Students only

Search Page – Page process setup
1. Import this inside src/pages/search/search.ts
2. Declare 2 variables, 1 for search box input and search result in array type

3. Insert inpublic toastCtrl:ToastController, public API: ApiProvider

search_box:any;
items = [];

constructor(

Students only

Search Page – Page process setup
4. Inside class insert function to make search request

to provider. This will push the data to result page on success query to the new page
export class SearchPage {

search(){
this.API.search(this.search_box).then((result) => {
console.log(result);
this.items = [];
if(result['code'] == 1){
result['message'].forEach(element => {
this.items.push(element);
console.log(this.items);
});
}
else if(result['code'] == 2){
this.items.push(result['message']);
this.presentToast(result['message']);
}
else{
this.items.push(result['message']);
this.presentToast(result['message']);
}

this.navCtrl.push('ResultPage',{
items: this.items
});
}).catch(function(reject) {
console.log('reject');
this.presentToast(reject['message']);
});
}

search(){

Students only

Search Page – Provider side setup

2. Inside , declare these 2 important variables:
credential is for basic authentication
url_api is url to the api server.

export class ApiProvider {

credential = btoa('test' + ":" + 'test');;
url_api = "http://demo.mu.my/api.php";

1. Go to src/providers/api/api.ts

Students only

Search Page – Provider side setup
3. This function will do the searching from server, 3 parameter will be send to the server,
submit parameter for is the action to tell the server that you are doing searching process
table_name for which table to be search
username is the column in the table you want to be search value from

//search
search(value){
return new Promise((resolve, reject) =>{
var configUrl = this.url_api;
let headers= new HttpHeaders({
'Content-Type' : 'application/json',
'Authorization': "Basic " + this.credential

});
let data = {
submit : 'search',
table_name : 'users',
username : value

};

this.http
.post(configUrl,JSON.stringify(data),{headers:headers})
.subscribe((res:any) => {
resolve(res);

}, (err) =>{
reject(err);

});
});

}Students only

Search Page – Interface setup on result page

1. Go to src/pages/result/result.html

2. Inside , insert this to generate dynamic list search result.

<ion-list>
<ion-item *ngFor="let i of items">{{i.username}} | {{i.email}} | {{i.status}}</ion-item>
</ion-list>

<ion-content padding>

Students only

Search Page – Page Process setup on result page

1. Go to src/pages/result/result.html

2. Inside , just declare this variable to take the value from
navpush controller which passed from search page.

items = this.navParams.get("items");

export class ResultPage {

Students only

Search Page – App Preview

Students only

Profile – Interface setup
1. Go to src/pages/update/update.html
2. Add reload button to refresh the list view with fresh data.

<button ion-button icon-only full round (click)="onload();">
<ion-icon name="refresh-circle"></ion-icon>
Reload

</button>

3. Add ionic list for populate all the data that can be edit. This list also will have update and
delete button, so from list, we can click either to update or delete the item shown.

<ion-list>
<ion-item *ngFor="let i of items">
{{i.name}}
<button ion-button (click)="updatePrompt(i.id);">Update</button>
<button ion-button color="danger" (click)="deletePrompt(i.id);">Delete</button>
</ion-item>
</ion-list>

Students only

Profile – Page Process Setup
1. Go to src/pages/update/update.ts
2. Import this 3 component into process file:

AlertController component is for message box popup.

import { ApiProvider } from '../../providers/api/api';
import { ToastController } from 'ionic-angular';
import { AlertController } from 'ionic-angular';

3. Inside , declare these 2 variables:
update_input is for input in alertbox usage
items is to store all list in array format. So ion list can populate all data in nice list

export class UpdatePage {

update_input:any;
items = [];

Students only

Profile – Page Process Setup
4. Add in

constructor(public navCtrl: NavController, public navParams: NavParams, public toastCtrl:
ToastController, public API: ApiProvider, private alertCtrl: AlertController)

public API: ApiProvider, private alertCtrl: AlertController

ionViewDidLoad() {
console.log('ionViewDidLoad UpdatePage');
this.onload();

}

5. Add in ionViewDidLoad function. This function will run every time page load.this.onload();

constructor(

Students only

Profile – Page Process Setup
6. Put onload function, this function mainly for execute when page load.

onload(){
this.items = [];
this.API.search('').then((result) => {
console.log(result);
result['message'].forEach(element => {
this.items.push({id: element.id,name: element.name});
});
}).catch(function(reject) {
console.log('reject');
var output = JSON.stringify(reject);
alert(output);
});
} Students only

Profile – Page Process Setup
7. Add this function, when message box prompt, when click yes or boolean is true this

function will be execute.
onUpdate(id,name){
console.log('onUpdate');
this.API.update(id,name).then((result) => {
console.log(result);
this.presentToast(result['message']);
this.onload();
}).catch(function(reject) {
console.log('reject');
console.log(reject);
});
}

Students only

Profile – Page Process Setup
8. Add this code when the user click delete button. This function will tell the provider and tell

the server to delete the data.
onDelete(id){
console.log('onDelete');
this.API.delete(id).then((result) => {
console.log(result);
this.presentToast(result['message']);
this.onload();
}).catch(function(reject) {
console.log('reject');
console.log(reject);
});
}

Students only

Profile – Page Process Setup
9. Add this function to present toaster message on screen.

presentToast($value) {
let toast = this.toastCtrl.create({
message: $value,
duration: 3000,
position: 'bottom'
});
toast.present();
}

Students only

Profile – Page Process Setup
10.Add this function to prompt user with a message box, to ask the user input with button

update and cancel. You can set what update and cancel button do by adding the
handler function to each button.
onUpdate function will be execute when the update button is press.

updatePrompt(id) {
console.log(id);
let alert = this.alertCtrl.create({
title: 'Please enter new value to update',
inputs: [
{
name: 'name',
placeholder: 'New Name'
}
],
buttons: [
{
text: 'Cancel',
role: 'cancel',
handler: data => {
console.log('Cancel clicked');
}
},

{
text: 'Update',
handler: data => {
console.log(data.name);
this.onUpdate(id,data.name);
}
}
]
});
alert.present();
}Students only

Profile – Page Process Setup
11.Add this function to prompt a user with a confirmation message box, either want to

delete or not.
Assign the function in button handler to set whatever you want button to do. This button
will execute onDelete function when Delete button is press.

deletePrompt(id) {
console.log(id);
let alert = this.alertCtrl.create({
title: 'Are you sure to delete this data?',
buttons: [
{
text: 'Cancel',
role: 'cancel',
handler: data => {
console.log('Cancel clicked');

}
},
{
text: 'Delete',
handler: data => {
this.onDelete(id);

}
}

]
});
alert.present();

}

Students only

Profile – Provider Setup
1. Go to src/providers/api/api.ts
2. Declare these 2 variables in export class ApiProvider {

credential = btoa('test' + ":" + 'test');;
url_api = "http://192.168.0.144/server/api.php";

3. Add search function to retrieve all the specified data needed for update.

//search
search(value){
return new Promise((resolve, reject) =>{
var configUrl = this.url_api;
let headers= new HttpHeaders({
'Content-Type' : 'application/json',
'Authorization': "Basic " + this.credential

});
let data = {
submit : 'search',
table_name : 'users',
name : value

};

this.http
.post(configUrl,JSON.stringify(data),{headers:headers})
.subscribe((res:any) => {
resolve(res);

}, (err) =>{
reject(err);

});
});

}Students only

Profile – Provider Setup
4. Add the update function to instruct the server to update data with the specified variable
//update

update(id,name){
return new Promise((resolve, reject) =>{
var configUrl = this.url_api;
let headers= new HttpHeaders({
'Content-Type' : 'application/json',
'Authorization': "Basic " + this.credential

});
let data = {
submit : 'update',
table_name : 'users',
id : id,
name : name

};

this.http
.post(configUrl,JSON.stringify(data),{headers:headers})
.subscribe((res:any) => {
resolve(res);

}, (err) =>{
reject(err);

});
});

}

Students only

Profile – Provider Setup
5. Add delete function to instruct the server to delete the data with the id specified.
//delete
delete(id){
return new Promise((resolve, reject) =>{
var configUrl = this.url_api;
let headers= new HttpHeaders({
'Content-Type' : 'application/json',
'Authorization': "Basic " + this.credential
});
let data = {
submit : 'delete',
table_name : 'users',
id : id
};
this.http
.post(configUrl,JSON.stringify(data),{headers:headers})
.subscribe((res:any) => {
resolve(res);
}, (err) =>{
reject(err);
});

});
}

Students only

Profile – App Preview

Students only

Change password – Interface setup
1. Go to src/pages/password/password.html
2. Generate 2 password field, 1 old and 1 new password field

<ion-item>
<ion-label >Old Password</ion-label>
<ion-input type="password" [(ngModel)]='oldpassword'></ion-input>
</ion-item>
<ion-item>
<ion-label >New password</ion-label>
<ion-input type="password" [(ngModel)]='newpassword'></ion-input>
</ion-item>
<button ion-button (click)='changePassword()' >Change Password</button>

Students only

Change password – Page process setup
1. Go to src/pages/password/password.ts
2. Import
3. Declare 2 variable in

import { RestApiProvider } from '../../providers/rest-api/rest-api';

export class PasswordPage {

oldpassword: any;
newpassword: any;

4. Add to
5. Add changePassword function to send validate the password on server side.

public API:RestApiProvider

changePassword(){
console.log('checkStatus');
this.API.changePassword(this.oldpassword,this.newpassword).then((result) => {
console.log('result');
var output = JSON.stringify(result);
alert(output);
}).catch(function(reject) {
console.log('reject');
var output = JSON.stringify(reject);
alert(output);
});
}

constructor(

Students only

Change password – Provider setup
1. Go to src/providers/api/api.ts
2. Declare this 2 variable, credential for basic authentication and url_api for api url.

3. Add changePassword function to send the oldpassword and newpassword to be verify
and process by the server.

credential = btoa('test' + ":" + 'test');;
url_api = "http://localhost:8888/rest_api/tests/json.php";

//change user password
changePassword(oldpassword,newpassword){
console.log('changePassword');
return new Promise((resolve, reject) =>{
var configUrl = this.url_api;
let data = {
request_param : 'changePassword',
oldpassword : oldpassword,
newpassword : newpassword
};

this.http
.post(configUrl,JSON.stringify(data))
.subscribe((res:any) =>{
resolve(res);
}, (err) =>{
reject(err);
});

});
}

Students only

Change password – App Preview

Students only

Forgot password – Interface setup
1. Go to src/pages/forgotpassword/forgotpassword.html
2. Add this email textbox and button to execute the forgotpassword function

<ion-item>
<ion-label >Email</ion-label>
<ion-input type="text" [(ngModel)]="emailforgot"></ion-input>
</ion-item>
<button ion-button (click)="forgotPassword()">Forgot Password</button>

Students only

Forgot password – Page process setup

Inside :
2. Declare variable to store email to be identified as forgot password account

forgotPassword(){
this.API.forgotPassword(this.emailforgot).then((result) => {
console.log(result);
this.presentToast(result);
}).catch(function(reject) {
console.log('reject');
console.log(reject);
});
}

export class ForgotPasswordPage {

1. Go to src/pages/forgotpassword/forgotpassword.ts

emailforgot: any;

3. Add this to public API:RestApiProvider constructor(

4. This function will send the variable emailforgot and wait for the return status.

Students only

Forgot password – Provider setup

2. Add this function inside .
This function will send a http request to server to process the forgotpassword process.
This 2 parameter will be send to the server to process

request_param : 'forgotPassword',
email : emailforgot

forgotPassword(emailforgot){

1. Go to src/providers/rest-api/rest-api.ts

export class RestApiProvider {

Students only

Forgot password – Provider setup
Full function

//forgot password
forgotPassword(emailforgot){
return new Promise((resolve, reject) =>{
var configUrl = this.url_api;
let headers= new HttpHeaders({
'Content-Type' : 'application/json',
'Authorization': "Basic " + this.credential

});
let data = {
request_param : 'forgotPassword',
email : emailforgot

};
this.http
.post(configUrl,JSON.stringify(data),{headers:headers})
.subscribe((res:any) =>{
resolve(res);

}, (err) =>{
reject(err);

});
});

}

Once triggered reset password, the token and selector will be send through email.

Students only

Forgot password – App Preview

Forgot password – Email Preview

Students only

Reset Password – Interface setup
1. Go to src/pages/resetpassword/resetpassword.html
2. Inside , insert this code to generate selector, token and password

field. Add button to execute the process.
<ion-content padding>

<ion-item>
<ion-label>Selector</ion-label>
<ion-input [(ngModel)]="selector" type="text" ></ion-input>

</ion-item>
<ion-item>
<ion-label>Token</ion-label>
<ion-input [(ngModel)]="token" type="text" ></ion-input>

</ion-item>
<ion-item>
<ion-label >New Password</ion-label>
<ion-input [(ngModel)]="new_password" type="text" ></ion-input>

</ion-item>
<button ion-button block (click)='reset_password()'>Reset Password</button>

Students only

Reset Password – Page process setup
1. Go to src/pages/resetpassword/resetpassword.ts
2. Inside , declare 3 variable for reset password process.
selector:any;
token:any;
new_password:any;

export class ResetpasswordPage {

3. Insert into public API:RestApiProvider,public toastCtrl:ToastController constructor(

reset_password(){
this.API.resetPassword(this.selector,this.token,this.new_password).then((result) => {
console.log(result);
this.presentToast(result);
}).catch(function(reject) {
console.log('reject');
console.log(reject);
});
}

4. Insert , this function basically will send 3 variable to provider that is
selector, token and new password variable. This will return the status in toaster popup.

reset_password(){

Students only

Reset Password – Page process setup
5. Add toaster popup function to display native popup message.
presentToast($value) {
let toast = this.toastCtrl.create({
message: $value,
duration: 3000,
position: 'bottom'
});
toast.present();
}

Students only

Reset Password – Provider setup
1. Go to src/providers/rest-api/rest-api.ts
2. Declare these 2 variables to work with the api:

credential for basic authentication
url_api for url to api

credential = btoa('test' + ":" + 'test');;
url_api = "http://demo.mu.my/light/tests/json.php";

Students only

Reset Password – Provider setup
3. Add this function to send request to the server processing the resetPassword
//reset password

resetPassword(selector,token,new_password){
return new Promise((resolve, reject) =>{
var configUrl = this.url_api;
let headers= new HttpHeaders({
'Content-Type' : 'application/json',
'Authorization': "Basic " + this.credential

});
let data = {
request_param : 'resetPassword',
selector : selector,
token : token,
password : new_password

};
this.http
.post(configUrl,JSON.stringify(data),{headers:headers})
.subscribe((res:any) =>{
resolve(res);

}, (err) =>{
reject(err);

});
});

}

Students only

Reset Password – App Preview

Reset Password – Email Preview
Students only

Logout button – Interface setup
1. Go to src/logout/logout.html
2. In add this buttonion-content

<button ion-button (click)="logout()">Logout</button>

Students only

Logout button – Page process setup
1. Go to src/logout/logout.ts
2. Add this into

3. Add this logout function inside

public API:RestApiProvider,public toastCtrl:ToastController

logout(){
this.API.logout().then((result) => {
console.log(result);
this.presentToast('logout');
this.navCtrl.push("LoginPage");
}).catch(function(reject) {
console.log('reject');
var output = JSON.stringify(reject);
});
}

constructor(

export class LogoutPage {

Students only

Logout button – Page process setup
4. Add toaster popup function to popup message to user in native view.
presentToast($value) {
let toast = this.toastCtrl.create({
message: $value,
duration: 3000,
position: 'bottom'
});
toast.present();
}

Students only

Logout button – Provider setup
1. Go to src/providers/rest-api.ts
2. Add this 2 variable inside
credential for basic authentication
url_api for url to link with the api

credential = btoa('test' + ":" + 'test');;
url_api = "http://demo.mu.my/light/tests/json.php";

export class RestApiProvider {

Students only

Logout button – Provider setup
3. Add inside

//logout
logout(){
return new Promise((resolve, reject) =>{
var configUrl = this.url_api;
let headers= new HttpHeaders({
'Content-Type' : 'application/json',
'Authorization': "Basic " + this.credential
});
let data = {
request_param : 'log0ut',
};
this.http
.post(configUrl,JSON.stringify(data),{headers:headers})
.subscribe((res:any) =>{
resolve(res);
}, (err) =>{
reject(err);
});

});
}

export class RestApiProvider {logout(){

Students only

Logout button – App Preview

Students only

Check user roles
1. Inside login function in src/pages/login/login.ts
Modify login function to be exact same as below. This function will verify user role from the
server side after authentication process success.
This condition will check if role of the user is ADMIN, then the page will go to admin page, if
no role then will just go normal user dashboard page

if(auth_role[auth_id] == 'ADMIN'){
this.navCtrl.push("AdminpagePage");
}
else{
this.navCtrl.push("DashboardPage");
}

Students only

Check user roles
Full function
login(){
// this.API.login(this.email,this.password,this.remember);
this.API.login(this.email,this.password,this.remember).then((result) => {
var output = JSON.stringify(result);
var auth_status = result['status'];
var auth_role = result['role'];
var auth_id = result['userid'];
this.presentToast(output);
if(auth_status == "Login Success"){
localStorage.setItem('email',this.email);
console.log(auth_role[auth_id]);
if(auth_role[auth_id] == 'ADMIN'){
this.navCtrl.push("AdminpagePage");

}
else{
this.navCtrl.push("DashboardPage");

}
}

}).catch(function(reject) {
console.log('reject');
var output = JSON.stringify(reject);
alert(output);

});
}

Students only

Check user roles – App Preview

Students only

Geolocation Detection – Install geolocation module

1. Install this command from console.

npm install --save @ionic-native/geolocation

2. Go to src/app/app-module.ts

3. Add to list.Geolocation providers: [

Students only

Geolocation Detection – Interface setup
1. Go to src/pages/geolocation/geolocation.html
2. Add in ion-content block, button and current latitude, longitude variable placer.

{{user}}
<button ion-button block
(click)="getGeolocation()">Get Current
Geolocation</button>
<p>Current location detail</p>
Latitude : <p>{{lat}}</p>
Longitude : <p>{{long}}</p>

Students only

Geolocation Detection – Interface setup
3. Inside add this code to create a form.<ion-content padding>

{{user}}
<p>Current location detail</p>
<ion-item>
<ion-label >Name</ion-label>
<ion-input [(ngModel)]="name" type="text" ></ion-input>
</ion-item>
<ion-item>
<ion-label >Email</ion-label>
<ion-input [(ngModel)]="email" type="text" ></ion-input>
</ion-item>
<ion-item>
<ion-label >Latitude</ion-label>
<ion-input [(ngModel)]="lat" type="text" ></ion-input>
</ion-item>
<ion-item>
<ion-label >Longitude</ion-label>
<ion-input [(ngModel)]="long" type="text" ></ion-input>
</ion-item>
<button ion-button block (click)="getGeolocation()">Get Current Geolocation</button>
<button ion-button block (click)="sendForm()">Submit</button>

Students only

Geolocation Detection – Page process setup

1. Go to src/pages/geolocation/geolocation.ts

2. Add on top.

3. Declare this 3 variable inside

import { Geolocation } from '@ionic-native/geolocation';

export class GeolocationPage {

user:any;
lat:any;
long:any;

4. Add insideprivate geolocation: Geolocation constructor(

Students only

Geolocation Detection – Page process setup

5. Add this inside to retrieve the current user logged in, logged in user
email placed in localstorage when logged in process, so we just take it back and display
it. A little condition case added to identified if logged in or not.

ionViewDidLoad() {

var email = localStorage.getItem('email');
if(email){
this.user = 'You are currently logged in using account ' + email;
}
else{
this.user = "Please login to see current logged in email.";
}

Students only

Geolocation Detection – Page process setup
6. Add function inside . This function mainly

used to retrieve the data from geolocation module. So the response will display is latitude
and longitude which coordinate of the current device.

getGeolocation(){
this.geolocation.getCurrentPosition().then((resp) => {
// resp.coords.latitude
// resp.coords.longitude
this.lat = resp.coords.latitude;
this.long = resp.coords.latitude;
}).catch((error) => {
console.log('Error getting location', error);

});

let watch = this.geolocation.watchPosition();
watch.subscribe((data) => {
// data can be a set of coordinates, or an error (if an error occurred).
// data.coords.latitude
// data.coords.longitude
this.lat = data.coords.latitude;
this.long = data.coords.latitude;
});
}

getGeolocation(){ export class GeolocationPage {

Students only

Geolocation Detection – Page process setup
7. Generate function for sendForm and presenttoast for toaster native popup message, this

function will send name, email, latitude, longitude to the API provider.

sendForm(){
this.API.insert(this.name,this.email,this.lat,this.long).then((result) => {
console.log(result);
this.presentToast(result['message']);
}).catch(function(reject) {
console.log('reject');
console.log(reject);
});
}

presentToast($value) {
let toast = this.toastCtrl.create({
message: $value,
duration: 3000,
position: 'bottom'
});
toast.present();
}

Students only

Geolocation Detection – Provider setup
1. Inside , declare this 2 variable for basic authentication and url

to api.

credential = btoa('test' + ":" + 'test');;
url_api = "http://demo.mu.my/api.php";

export class ApiProvider {

2. Add function insert in provider, this will send data to the server and return response.
//insert
insert(name,email,lat,long){
return new Promise((resolve, reject) =>{
var configUrl = this.url_api;
let headers= new HttpHeaders({
'Content-Type' : 'application/json',
'Authorization': "Basic " + this.credential
});
let data = {
submit : 'insert',
table_name : 'location',
name : name,
email : email,
latitude : lat,
longitude : long
};

this.http
.post(configUrl,JSON.stringify(data),{headers:headers})
.subscribe((res:any) => {
resolve(res);
}, (err) =>{
reject(err);
});
});
}Students only

Geolocation Detection – App Preview

Students only

